Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biotechnol Lett ; 45(7): 779-797, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2317808

RESUMEN

BACKGROUND: COVID-19 has proved to be a fatal disease of the year 2020, due to which thousands of people globally have lost their lives, and still, the infection cases are at a high rate. Experimental studies suggested that SARS-CoV-2 interacts with various microorganisms, and this coinfection is accountable for the augmentation of infection severity. METHODS AND RESULTS: In this study, we have designed a multi-pathogen vaccine by involving the immunogenic proteins from S. pneumonia, H. influenza, and M. tuberculosis, as they are dominantly associated with SARS-CoV-2. A total of 8 antigenic protein sequences were selected to predict B-cell, HTL, and CTL epitopes restricted to the most prevalent HLA alleles. The selected epitopes were antigenic, non-allergenic, and non-toxic and were linked with adjuvant and linkers to make the vaccine protein more immunogenic, stable, and flexible. The tertiary structure, Ramachandran plot, and discontinuous B-cell epitopes were predicted. Docking and MD simulation study has shown efficient binding of the chimeric vaccine with the TLR4 receptor. CONCLUSION: The in silico immune simulation analysis has shown a high level of cytokines and IgG after a three-dose injection. Hence, this strategy could be a better way to decrease the disease's severity and could be used as a weapon to prevent this pandemic.


Asunto(s)
COVID-19 , Coinfección , Vacunas Virales , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19 , Epítopos de Linfocito T/genética , Simulación del Acoplamiento Molecular , Vacunas de Subunidad , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/química , Biología Computacional/métodos
2.
Struct Chem ; : 1-16, 2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2174784

RESUMEN

SARS-CoV-2 and its variants cause serious health concerns throughout the world. The alarming increase in the daily number of cases has become a nightmare in many low-income countries; although some vaccines are available, their high cost and low vaccine production make them unreachable to ordinary people in developing countries. Other treatment strategies are required for novel therapeutic options. The peptide-based drug is one of the alternatives with low toxicity, more specificity, and ease of synthesis. Herein, we have applied structure-based virtual screening to identify potential peptides targeting the critical proteins of SARS-CoV-2. Non-toxic natural antiviral peptides were selected from the enormous number of peptides. Comparative modeling was applied to prepare a 3D structure of selected peptides. 3D models of the peptides were docked using the ClusPro docking server to determine their binding affinity and peptide-protein interaction. The high-scoring peptides were docked with other crucial proteins to analyze multiple targeting peptides. The two best peptides were subjected to MD simulations to validate the structure stability and evaluated RMSD, RMSF, Rg, SASA, and H-bonding from the trajectory analysis of 100 ns. The proposed lead peptides can be used as a broad-spectrum drug and potentially develop as a therapeutic to combat SARS-CoV-2, positively impacting the current pandemic. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02113-9.

3.
Mol Divers ; 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2122223

RESUMEN

The COVID-19 crisis, incited by the zoonotic SARS-CoV-2 virus, has quickly escalated into a catastrophic public health issue and a grave threat to humankind owing to the advent of mutant viruses. Multiple pharmaceutical therapies or biologics envision stopping the virus from spreading further; however, WHO has voiced concerns about the variants of concern (VoCs) inability to respond. Nanobodies are a new class of antibody mimics with binding affinity and specificity similar to classical mAbs, as well as the privileges of a small molecular weight, ease of entry into solid tissues, and binding cryptic epitopes of the antigen. Herein, we investigated multiple putative anti-SARS-CoV-2 nanobodies targeting the Receptor binding domain of the WHO-listed SARS-CoV-2 variants of concern using a comprehensive computational immunoinformatics methodology. With affinity maturation via alanine scanning mutagenesis, we remodeled an ultrapotent nanobody with substantial breadth and potency, exhibiting pico-molar binding affinities against all the VoCs. An antiviral peptide with specificity for ACE-2 receptors was affixed to make it multispecific and discourage viral entry. Collectively, we constructed a broad-spectrum therapeutic biparatopic nanobody-peptide conjugate (NPC) extending coverage to SARS-CoV-2 VoCs RBDs. We PEGylated the biparatopic construct with 20kD maleimide-terminated PEG (MAL-(PEG)n-OMe) to improve its clinical efficacy limiting rapid renal clearance, and performed in silico cloning to facilitate future experimental studies. Our findings suggest that combining biparatopic nanobody conjugate with standard treatment may be a promising bivariate tool for combating viral entry during COVID-19 illness.

4.
Life Sci ; 305: 120761, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1914795

RESUMEN

COVID-19 is a highly transmissible disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), affects 226 countries and continents, and has resulted in >6.2 million deaths worldwide. Despite the efforts of all scientific institutions worldwide to identify potential therapeutics, no specific drug has been approved by the FDA to treat the COVID-19 patient. SARS-CoV-2 variants of concerns make the potential of publicly known therapeutics to respond to and detect disease onset highly improbable. The quest for universal therapeutics pointed to the ability of RNA-based molecules to shield and detect the adverse effects of the COVID-19 illness. One such candidate, miRNA (microRNA), works on regulating the differential expression of the target gene post-transcriptionally. The prime focus of this review is to report the critical miRNA molecule and their regular expression in patients with COVID-19 infection and associated comorbidities. Viral and host miRNAs control the etiology of COVID-19 infection throughout the life cycle and host inflammatory response, where host miRNAs are identified as a double-edged showing as a proviral and antiviral response. The review also covered the role of viral miRNAs in mediating host cell signaling expression during disease pathology. Studying molecular interactions between the host and the SARS-CoV-2 virus during COVID-19 pathogenesis offers the chance to use miRNA-based therapeutics to reduce the severity of the illness. By utilizing an appropriate delivery vehicle, these small non-coding RNA could be envisioned as a promising biomarker in designing a practical RNAi-based treatment approach of clinical significance.


Asunto(s)
COVID-19 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , SARS-CoV-2
5.
J Food Drug Anal ; 29(4): 559-580, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1579160

RESUMEN

The recent COVID-19 outbreak caused by SARS-CoV-2 virus has sparked a new spectrum of investigations, research and studies in multifarious directions. Efforts are being made around the world for discovery of effective vaccines/drugs against COVID-19. In this context, Ayurveda, an alternative traditional system of medicine in India may work as an adjuvant therapy in compromised patients. We selected 40 herbal leads on the basis of their traditional applications. The phytomolecules from these leads were further screened through in-silico molecular docking against two main targets of SARS-CoV-2 i.e. the spike protein (S; structural protein) and the main protease (MPRO; non-structural protein). Out of the selected 40, 12 phytomolecules were able to block or stabilize the major functional sites of the main protease and spike protein. Among these, Ginsenoside, Glycyrrhizic acid, Hespiridin and Tribulosin exhibited high binding energy with both main protease and spike protein. Etoposide showed good binding energy only with Spike protein and Teniposide had high binding energy only with main protease. The above phytocompounds showed promising binding efficiency with target proteins indicating their possible applications against SARS-CoV-2. However, these findings need to be validated through in vitro and in vivo experiments with above mentioned potential molecules as candidate drugs for the management of COVID-19. In addition, there is an opportunity for the development of formulations through different permutations and combinations of these phytomolecules to harness their synergistic potential.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicina Ayurvédica , Preparaciones de Plantas , SARS-CoV-2 , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Preparaciones de Plantas/farmacología , Plantas Medicinales , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus
6.
World J Crit Care Med ; 10(5): 244-259, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1456454

RESUMEN

BACKGROUND: Our understanding of the severe acute respiratory syndrome coronavirus 2 has evolved since the first reported cases in December 2019, and a greater emphasis has been placed on the hyper-inflammatory response in severely ill patients. The purpose of this study was to determine risk factors for mortality and the impact of anti-inflammatory therapies on survival. AIM: To determine the impact of various therapies on outcomes in severe coronavirus disease 2019 patients with a focus on anti-inflammatory and immune-modulating agents. METHODS: A retrospective analysis was conducted on 261 patients admitted or transferred to the intensive care unit in two community hospitals between March 12, 2020 and June 17, 2020. Totally 167 patients received glucocorticoid (GC) therapy. Seventy-three patients received GC alone, 94 received GC and tocilizumab, 28 received tocilizumab monotherapy, and 66 received no anti-inflammatory therapy. RESULTS: Patient survival was associated with GC use, either alone or with tocilizumab, and decreased vasopressor requirements. Delayed administration of GC was found to decrease the survival benefit of GC therapy. No difference in survival was found with varying anticoagulant doses, convalescent plasma, tocilizumab monotherapy; prone ventilation, hydroxychloroquine, azithromycin, or intravenous ascorbic acid use. CONCLUSION: This analysis demonstrated the survival benefit associated with anti-inflammatory therapy of GC, with or without tocilizumab, with the combination providing the most benefit. More studies are needed to assess the optimal timing of anti-inflammatory therapy initiation.

7.
J Biomol Struct Dyn ; : 1-25, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1249240

RESUMEN

In view of many European countries and the USA leading to the second wave of COVID-19 pandemic, winter season, the evolution of new mutations in the spike protein, and no registered drugs and vaccines for COVID-19 treatment, the discovery of effective and novel therapeutic agents is urgently required. The degrees and frequencies of COVID-19 clinical complications are related to uncontrolled immune responses, secondary bacterial infections, diabetes, cardiovascular disease, hypertension, and chronic pulmonary diseases. It is essential to recognize that the drug repurposing strategy so far remains the only means to manage the disease burden of COVID-19. Despite some success of using single-target drugs in treating the disease, it is beyond suspicion that the virus will acquire drug resistance by acquiring mutations in the drug target. The possible synergistic inhibition of drug efficacy due to drug-drug interaction cannot be avoided while treating COVID-19 and allied clinical complications. Hence, to avoid the unintended development drug resistance and loss of efficacy due to drug-drug interaction, multi-target drugs can be promising tools for the most challenging disease. In the present work, we have carried out molecular docking studies of compounds from the FDA approved drug library, and the FDA approved and passed phase -1 drug libraries with ten therapeutic targets of COVID-19. Results showed that known drugs, including nine anti-inflammatory compounds, four antibiotics, six antidiabetic compounds, and one cardioprotective compound, could effectively inhibit multiple therapeutic targets of COVID-19. Further in-vitro, in vivo, and clinical studies will guide these drugs' proper allocation to treat COVID-19.Communicated by Ramaswamy H. Sarma.

8.
Int J Biol Macromol ; 160: 1-17, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: covidwho-378216

RESUMEN

The present-day world is severely suffering from the recently emerged SARS-CoV-2. The lack of prescribed drugs for the deadly virus has stressed the likely need to identify novel inhibitors to alleviate and stop the pandemic. In the present high throughput virtual screening study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), and ADME properties to screen natural compounds. It has been documented that many natural compounds display antiviral activities, including anti-SARS-CoV effect. The present study deals with compounds of Natural Product Activity and Species Source (NPASS) database with known biological activity that probably impedes the activity of six essential enzymes of the virus. Promising drug-like compounds were identified, demonstrating better docking score and binding energy for each druggable targets. After an extensive screening analysis, three novel multi-target natural compounds were predicted to subdue the activity of three/more major drug targets simultaneously. Concerning the utility of natural compounds in the formulation of many therapies, we propose these compounds as excellent lead candidates for the development of therapeutic drugs against SARS-CoV-2.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Betacoronavirus/metabolismo , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Terapia Molecular Dirigida , Betacoronavirus/enzimología , Betacoronavirus/fisiología , Productos Biológicos/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , SARS-CoV-2 , Factores de Tiempo , Interfaz Usuario-Computador , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA